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A new theoretical formulation is presented for mass transport across the dynamic 
interface associated with a spherical bubble undergoing volume oscillations. As a 
consequence of the changing internal pressure of the bubble that accompanies volume 
oscillations, the concentration of the dissolved gas in the liquid at the interface 
undergoes large-amplitude oscillations. The convectiondiffusion equations governing 
transport of dissolved gas in the liquid are written in Lagrangian coordinates to 
account for the moving domain. The Henry’s law boundary condition is split into 
a constant and an oscillating part, yielding the smooth and the oscillatory problems 
respectively. The solution of the oscillatory problem is valid everywhere in the liquid 
but differs from zero only in a thin layer of the liquid in the neighbourhood of the 
bubble surface. The solution to the smooth problem is also valid everywhere in the 
liquid; it evolves via convection-enhanced diffusion on a slow timescale controlled by 
the Pklet number, assumed to be large. Both the oscillatory and smooth problems are 
treated by singular perturbation methods : the oscillatory problem by boundary-layer 
analysis, and the smooth problem by the method of multiple scales in time. Using 
this new formulation, expressions are developed for the concentration field outside 
a bubble undergoing arbitrary nonlinear periodic volume oscillations. In addition, 
the rate of growth or dissolution of the bubble is determined and compared with 
available experimental results. Finally, a new technique is described for computing 
periodically driven nonlinear bubble oscillations that depend on one or more physical 
parameters. This work extends a large body of previous work on rectified diffusion 
that has been restricted to the assumptions of infinitesimal bubble oscillations or of 
threshold conditions, or both. The new formulation represents the first self-consistent, 
analytical treatment of the depletion layer that accompanies nonlinear oscillating 
bubbles that grow via rectified diffusion. 

1. Introduction 
A bubble that would ordinarily dissolve in a liquid may increase in mass, rather 

than dissolve, if it undergoes volume oscillations in response to some perturbation. 
Previous analyses of the problem of the mass transport associated with an oscillating 
bubble have focused on the phenomenon of rectified diffusion, first identified by 
Blake (1949). In rectified diffusion, the normal process of dissolution of a gas bubble 
in a liquid may be reversed by sufficiently intense volume oscillations; hence a bubble 
which pulsates owing to the influence of an acoustic pressure field may grow if the 
amplitude of the pressure oscillations exceeds a certain threshold value. There are three 
factors that lead to this curious phenomenon. First, as the bubble volume changes, 
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so also does the internal pressure; this changes the concentration of dissolved gas 
in the liquid at the bubble interface, as determined by Henry’s Law. Second, as the 
bubble undergoes volume oscillations, the surface area available for transport across 
the interface changes dramatically. Third, volume oscillations are accompanied by 
radial motion in the liquid that is characterized by a velocity field that decays as 
r P 2 ;  this causes material points in the liquid separated by some radial distance to 
converge and diverge over the course of a bubble oscillation. As we shall establish, 
much of the concentration field is very nearly a material field as a consequence of 
the small diffusivity of gases in liquids. Hence any means by which material points 
in the liquid converge or diverge will have an important effect on whatever diffusive 
process may occur, through alternate steepening and shallowing of concentration 
gradients. 

Past analyses of the mass transport across the dynamic interface associated with a 
bubble undergoing spherical oscillations have been restricted to infinitesimal radial 
oscillations of the bubble, or to threshold conditions where there is no net transport, 
or to both of these limitations. The reason for the restriction to the equilibrium 
problem of threshold conditions is that it was not known how to formulate the 
problem for the concentration field away from threshold conditions. The theoretical 
difficulty hinges on determination of the motion of the net flux of dissolved gas either 
away from a dissolving bubble or toward a growing bubble. In the latter case the zone 
of liquid in which the gas concentration is lowered as a consequence of net bubble 
growth has been referred to as the depletion layer by several authors. An additional 
challenging problem is to develop a rigorous means by which to deduce the influence 
of convection associated with the bubble volume oscillations on the diffusion of the 
net flux of dissolved gas. In the present paper we describe a way to resolve these 
difficulties which constitutes a new formulation of the problem. 

A detailed review of some of the past work in this area was conducted by 
Plesset & Prosperetti (1977); therefore we will be brief in our comments on the 
work they describe. We provide a detailed comparison of our formulation with the 
others in 

We begin with the paper of Blake (1949), in which there is an estimation of the 
net inflow of dissolved gas using a quasi-static solution of the diffusion problem in 
the liquid. Hsieh & Plesset (1961) studied the problem by assuming that the forcing 
acoustic pressure field, the bubble radius, and the concentration of gas in the liquid 
at the surface of the bubble all have (small-amplitude) sinusoidal dependence on 
time. Ella & Flynn (1965) removed the restriction to small sinusoidal oscillations 
in favour of a restriction to high-frequency oscillations and performed a boundary- 
layer analysis in Lagrangian coordinates first introduced by Plesset & Zwick (1952). 
This form of approximation is known as the thin-diffusion-layer approximation; it is 
uniformly valid in time only at threshold conditions. In other words, no provision is 
made for net flux of dissolved gas toward or away from the bubble. 

In two papers Skinner (1970, 1972) treated the mass transport problem of an 
oscillating bubble using an ingenious decomposition of the concentration field. In the 
first paper, Skinner computed the forcing pressure threshold for rectified diffusion 
associated with a bubble undergoing small-amplitude sinusoidal radial oscillations. 
The equilibrium concentration field was computed via a double perturbation scheme 
that assumed (i) that the oscillations are small, and (ii) that the concentration gradients 
in the liquid are negligible outside a thin layer. 

In the second paper, Skinner studied the problem of mass transport associated with 
an oscillating bubble away from threshold conditions. Two separate boundary layers 
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in the concentration field near the bubble surface were identified. The first (thinner) 
layer is associated with the time-dependent concentration of gas in the liquid at the 
surface of the bubble that arises according to Henry’s law. The second (thicker) layer 
is associated with net flux of dissolved gas in the liquid. The two layers were handled 
by decomposing the concentration field into two parts. Skinner used the solution 
for the concentration field to examine the rate of growth of the average radius of a 
bubble undergoing small-amplitude sinusoidal oscillations. 

More recently, Crum (1980) reports an extension to the threshold theory of Eller & 
Flynn, and experimental results of bubble growth rates away from threshold that far 
exceed the theoretical predictions of Eller & Flynn (or related theories). In addition, 
Crum finds that the addition of surface-active material to the bubble has an effect 
on bubble growth rates that is dramatically greater than can be accounted for by a 
simple modification of surface tension in the theory. Also observed were significant 
departures from the theoretical thresholds at super- or sub-saturated conditions in 
the far field. 

Crum & Hansen (1982) and Church (1988) compare the various results for thresh- 
old acoustic pressure amplitude for growth of gas bubbles by rectified diffusion. 
Crum & Hansen generalize the analysis of Eller & Flynn to include more accurate 
perturbation results for the radial oscillations and damping. Church demonstrates 
graphically the sensitive dependence of the phenomenon of rectified diffusion on gas 
concentration in the far field. 

Numerical solutions of the convection-diffusion equation for the dissolved gas in 
the liquid are reported by Kamath & Prosperetti (1990). These authors report that 
away from saturation conditions, the theory of Eller & Flynn tends to over-predict 
the threshold driving pressure amplitude for rectified diffusion, and under-predict the 
growth rates of bubbles at conditions that exceed threshold. 

Finally, another possible approach to this class of problems is represented by 
the recent work of Fannjiang & Papanicolaou (1994) and references therein. These 
authors develop a general framework for homogenization of convection-diffusion 
equations valid for small diffusivities and for steady, spatially periodic flow fields in 
infinite domains. However, the mass transport problem of interest here includes an 
unsteady, spatially inhomogeneous (but not spatially periodic) velocity field and an 
extremely problematic boundary condition. 

In summary, there appears to be an adequate theory for threshold conditions in 
a saturated liquid, but very little progress has been made on the non-equilibrium 
problem of nonlinear bubble growth or dissolution away from threshold conditions. 
The principal practical deficiency of the theory is the under-prediction of bubble 
growth rates at conditions that exceed threshold, especially for bubbles intentionally 
contaminated with surface-active materials as mentioned in Crum (1980, 1984). Even 
in the absence of consideration of the effects of surfactants, the growth or dissolution 
of nonlinearly oscillating bubbles has not been addressed owing to the difficul- 
ties mentioned above, i.e. a rigorous formulation of convection-enhanced diffusion, 
etc. 

In the present paper, we treat the problem of a single bubble oscillating in a 
liquid of arbitrary saturation, i.e. away from threshold conditions. This work is 
part of an on-going project to understand the role of surfactants in gas transport 
across a dynamic interface. At this stage, we focus on developing the mathe- 
matical techniques required to solve convection-diffusion equations outside an 0s- 
cillating bubble, together with complicated unsteady boundary conditions at the 
interface. 
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2. Formulation 
In this section we formulate the mass transport problem and concentrate on the 

practical problem of large Peclet number. The differential equation governing the 
convection and diffusion of a dissolved gas in a liquid outside a spherically symmetric 
bubble is, in spherical polar coordinates, 

-+  at r2 z - ~ ~ ( r ~ ) ~  

where C is the mass fraction of gas dissolved in the liquid, R2(t )k( t ) / r2  is the radial 
velocity field in the liquid associated with the bubble oscillations, D is the diffusivity 
of the gas in the liquid, and the bubble radius R is a function of time t. Note that 
the velocity field in the liquid is time-dependent, spatially inhomogeneous and occurs 
in a domain with a moving boundary. 

The dynamical equation for bubble oscillations is a nonlinear differential equation, 
such as the Rayleigh-Plesset equation, with derivation reviewed by Prosperetti (1984) : 
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(2.1) 
aC ~ * ( t ) i z ( t )  aC - D a ,aC 

Although the results we develop in the present work apply irrespective of exactly 
which bubble dynamical equations are used, we have written the Rayleigh-Plesset 
equation in order to fix ideas and aid in non-dimensionalization. Here and in what 
follows, p is the density of the liquid, mG is the mass of the gas in the bubble, M is the 
molecular weight of the gas, & is the universal gas constant, T, is the temperature of 
the fluid, pv is the vapour pressure, p s  is the pressure in the liquid, y is the interfacial 
tension and p is the viscosity of the liquid. The polytropic exponent q varies between 
the extremes of unity for an isothermal bubble and the ratio of specific heats c p / c ,  
for an adiabatic bubble. 

The boundary condition at the bubble surface is developed by application of 
Henry’s law, which relates the concentration of a gas in a liquid to the partial 
pressure of the gas above the liquid; hence 

P G  C ( r  = R( t ) , t )  = -. 
k 

Here, p~ is the partial pressure of the gas and k is the constant of Henry’s law. For 
oscillations of a gas bubble with initial pressure equal to p ~ ~ ,  the surface boundary 
condition may be written 

where p L ( t )  is dimensionless. The bubble is assumed to be created in a fluid which 
initially has a uniform concentration of the gas C,. Hence the initial condition and 
the far-field conditions are 

(2.3) C ( r ,  t = 0) = C ( r  + co, t )  = c,. 
The rate of transport of gas across the bubble interface is 

dmG aC(r = R(t), t )  
- = 4zR2D - 
dt d r  

The problem may be non-dimensionalized with respect to the following natural 
scales. As a lengthscale, we take a, the radius of the undisturbed bubble. The 
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timescale is Qo-l, which is the inverse of the natural frequency of radial oscillations 
of the bubble about the undisturbed state. The pressure is made dimensionless using 
the pressure scale ipa2Q02. This leads to dimensionless parameters corresponding to 
the gas pressure in the undisturbed bubble, 

1 3 m G k T m  - 2PGi -- 
PGi = 2 7 1 ~ p a 5 ~ ~ 2  pa2Q02 

the Weber number We, 

2P(aQo)2a We = 9 

Y 
the Reynolds number Re, 

P(aao)a Re = -, 
c1 

and the dimensionless forcing pressure 

The convection4iffusion equation (2.1) is non-dimensionalized to read 

-+  
where 5 is the dimensionless radial coordinate, x ( z )  is the dimensionless bubble radius, 
and the Phclet number is Pe = a2QO/D. Next we non-dimensionalize the Henry's law 
boundary condition (2.2) to read 

The dimensionless Henry's law constant is k' = 2k/p(aQo)'. Note that we have 
subtracted the concentration at infinity from the concentration field, i.e. C = c - C,. 
Hence the initial and far-field conditions (2.3) become 

C(<,z = 0) = C(t + 00,z) = 0. 

Finally, for a motionless bubble, we have 

from which we obtain an alternative expression of the boundary condition at the 
bubble surface 

C(<  = x(z),z) = - $ ( 1 + - P;we) P a )  - G. 

The saturation concentration in the liquid separated from gas at pressure p i  by a 
plane boundary is Csp = p ; / k * .  The saturation concentration in the liquid separated 
from gas within a spherical bubble of dimensionless radius x = 1 is 
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2.1. Lagrangian formulation 
The principal analytical difficulties presented by the governing equations are the 
following. First, the boundary condition at the surface of the bubble (2.5) is applied 
at a time-dependent value of the radial coordinate 5 = x(z); hence the problem is one 
with a moving boundary. Moreover, the boundary condition applied at the moving 
boundary is unsteady. The second observation is that the spatially inhomogeneous 
convection velocity can change sign, and is a nonlinear function of the bubble radius 
which evolves according to its own (nonlinear) ordinary differential equation. It is 
not possible to judge whether the convection tends to drive dissolved gas toward or 
away from the bubble. The goal of the present analysis is to refrain from specification 
of the bubble oscillation during development of the general theory in order that 
the concentration field and enhancement of transport may be studied for bubble 
oscillations that are as general as possible. 

The first analytical difficulty, namely the moving boundary, can be eliminated 
by transforming the problem into Lagrangian coordinates; this is suggested by the 
observation that the bubble surface is a material surface. We assume the fluid outside 
the bubble is incompressible (at least for the purposes of solution of the convection- 
diffusion equation). Volume conservation and the particle paths one can obtain from 
the velocity field imply that the coordinate 0 = i(t3 - x3(2)) has a constant value 
for a particle of fixed identity. In what follows, we shall work in the Lagrangian 
coordinates (0, z) rather than in the Eulerian coordinates (t, z). 

Equation (2.4) for the concentration field takes the form 

__ ac - - _- 1 a ((30 + x3(t))(4’31 ”) 
a z  Peda d o  

with boundary and initial conditions 

The equations now describe a field in a domain with a fixed boundary at the bubble 
surface. 

In dimensionless, Lagrangian variables, the rate of transport is given by 

- x4 
dz Pe a0 7 (2.8) 

dm> 3 dC(a =O,z) 

where m> is mG divided by the mass of liquid displaced by the undisturbed bubble. 

- -- 

2.2. Splitting of the problem 
In the limit of infinite Pe, the concentration field is simply determined by the initial 
condition and the motion of the fluid particles outside the bubble; this is a consequence 
of the fact that (2.6) has the solution C(o) in that limit. However, the solution for 
large, but finite Pe is not a smooth perturbation of the solution for infinite Pe but 
a singular one. Physically, the reasons for this are as follows. when Pe = a, the 
concentration field is a material field, with C constant for each material point of 
fluid outside the bubble. When 1 GPe < co, however, the existence of diffusion means 
that C changes slowly for a material point of fluid, in response to the gradient in C 
with neighbouring material points. Of course, the gradient in C with neighbouring 
material points alternately steepens and shallows over a cycle of bubble oscillation. 
Hence there are two timescales that are important in the problem; the indications are 
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that a multiple-scales approach will be profitable. We refer the interested reader to 
the recent book by Hinch (1991) for an insightful discussion of this reasoning. 

Another analytical difficulty is the time-dependent boundary condition (2.7). At 
large Pe, the concentration field will be characterized by oscillatory behaviour close to 
the bubble surface, due to the Henry’s law boundary condition, and by slow diffusion 
further away from the bubble. To solve for the concentration field, it is profitable to 
split the problem into two parts. One part, the oscillatory problem, corresponds to the 
oscillatory part of the boundary condition, but as we shall see this part contributes 
nothing to the mass transport, asymptotically in time. The second part, the smooth 
problem, represents the constant part of the boundary condition which produces the 
same effect on the concentration in the far field as the full, time-dependent boundary 
condition. This constant boundary condition is not arbitrary but actually emerges 
from the solution of the oscillatory problem. 

To begin the splitting, we define the average with respect to a convenient new 
nonlinear time 3 

= l* x4(e)de; (2.9) 

the average is 

Jo 
where T is the dimensionless period of bubble oscillation. This somewhat peculiar 
averaging scheme will soon emerge as a clear manifestation of the spherical nature 
of the problem. 

Using this average, we split the boundary condition at the surface of the bubble 
(2.7) as follows: 

c(0 = = c s b  pk(T) - ccc = c s b  (pk(7) ) t  - cco + c s b  [ pk(T) - (pk(7)>i] , 
where the oscillating part is associated with the oscillatory problem and the constant 
part with the smooth problem. The oscillatory problem is therefore 

(2.10) 

with boundary and initial conditions 

The smooth problem is defined by 

(2.12) 

with boundary and initial conditions 

The sum of the solutions to the oscillatory and smooth problems is the solution to the 
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full problem, i.e. C(o,z) = Cosc(o,z) + Csm(u,z). From equation (2.12) and boundary 
condition (2.13)’ it is straightforward to realize that (2.13) equal to zero gives the 
threshold criterion for rectified diffusion. We return to this point shortly. 

The splitting just described closely parallels what one might do to solve for the 
motion in a fluid above an infinite flat plate that is moved horizontally in an impulsive 
fashion. Suppose that the plate is moved in an oscillatory manner with some non-zero 
mean velocity. As a consequence of the linear nature of the Navier-Stokes equations 
when restricted to the case of parallel flow in a domain of infinite extent, the problem 
is easily split in two. In one problem (Stokes’ first problem, 1851) the flat plate 
moves at a uniform speed. In the second problem (Stokes’ second problem) the flat 
plate oscillates with zero mean. In both cases the motion of the fluid is most easily 
understood by the diffusion of vorticity created by the no-slip boundary condition 
on the solid wall. We refer the interested reader to Kundu (1990) or to Leal (1992) 
for a discussion of these points. The main difference between Stokes’ problems and 
the convection-diffusion problem pursued here is that we must resort to singular 
perturbation analyses in both oscillatory and smooth problems. 

3. The oscillatory problem 
Solution of the oscillatory problem provides the rationale for the non-intuitive 

averaging procedure used to split the problem in the previous section, as well as 
the threshold condition for rectified diffusion. However, the oscillatory solution 
contributes virtually nothing to the mass transport across the bubble surface even at 
conditions far removed from threshold. To solve the oscillatory problem, we re-scale 
the spatial coordinate u by the square-root of the Piclet number. Hence we define 
s = Pe’/’a. The oscillatory equation (2.10) becomes 

In the limit of large Pe, this equation simplifies; to leading order, we have 

where C:sc is the leading term in an expansion of the form 

The leading-order problem may be solved by rescaling time as in (2.9) in order to 
transform to a canonical parabolic equation. This yields 

Hence, after application of techniques from singular perturbation theory and a 
nonlinear transformation of time, the leading order solution of the oscillatory prob- 
lem is identical to Stokes’ second problem of flow near an oscillating flat plate. 
Eller & Flynn (1965) work out the details of the transient solution for the concentra- 
tion field as an initial step in their analysis. However, they use a different boundary 
condition as we describe in 9 5 below. 

We compute the asymptotic solution c2,c (indicated by an overbar) via a Fourier 
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series approach, as follows. First, the boundary condition (2.11) is expanded as a 
Fourier series in the nonlinear time 2: 

C:JS = 0,2) = Csb [ P ; ; ( 4  - (P&))iI 

= x [a, cos ( 0 ~ 2 )  + b, sin (wm2)], (3.2) 
m= 1 

where 

It is of critical importance to note that there is no mean term in the Fourier expansion 
of the boundary condition in the nonlinear time by construction, because (2.1 1) implies 

a0 = 7 C:s,(~ = 0, 2)d2 = 0. 
z ( T )  0 

Next, we assume a (real) solution of the form 
00 

m=-m,m#O 

Term-by-term, one can solve to obtain the asymptotic concentration field for the 
oscillatory problem 

Each mode is heavily damped with distance s away from the bubble. For example, 
the amplitude of mode m is reduced to 1% when s = 6.5/(wm)(”*), i.e. when 

= 6.5/(Pe u,,,)(~’~). Hence by requiring the mean term to be zero, the effect of the 
oscillatory boundary condition is localized to a small boundary-layer region close to 
the bubble. In order to expose the dependence of the boundary-layer thickness on 
the driving frequency we express 0, and s in the original variables: 

where 52 is the driving frequency. The average of x4 (known as the fourth moment) is 
large for oscillations that linger at large x. The parameters that tend to increase the 
boundary-layer thickness are low frequency, small bubbles, large diffusion coefficient 
and nonlinear bubble oscillations. In figure 1 we show the asymptotic solution of the 
oscillatory problem of the concentration field for Pe = 1000 and x(z) = 1+0.1 sin (2712). 

The rate of mass transport (2.8) expressed in the nonlinear time Q and scaled spatial 
coordinate s is 
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FIGURE 1. The asymptotic concentration profile for the oscillatory problem for Pe = 1000 and 
~ ( t )  = 1 + 0.1 sin(2nt), at (a) z = T/4, ( b )  t = T/2, (c) t = 3T/4 and ( d )  t = T. The plots show 
C:s,/Cs, versus the dimensionless Eulerian radial coordinate <. The circular arc shows the position 
of the bubble surface. 

With the use of the asymptotic solution (3.3), it is a simple matter to determine that 
the associated mass transport over one period is zero. In Appendix A, we show 
that the asymptotic solution is reached very rapidly in a few periods of the bubble 
oscillation. Hence the mass transport associated with the transient in the oscillatory 
problem is negligible. 
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4. The smooth problem 
It is in solving the smooth problem that we must develop a means by which to 

handle both convection-enhanced diffusion and the depletion layer associated with 
bubbles that grow by rectified diffusion. The smooth problem is characterized by 
slow convection-enhanced diffusion and by a steady boundary condition. Therefore, 
we introduce a second timescale A = z/Pe = tD/a2, which captures the slow diffusive 
behaviour. Furthermore, we define for future use a second (conventional) time average 
with respect to z over one period of bubble oscillation, 

(4.1) 

Next we expand 

Then, to zeroth order in the small parameter Pep’, we have the system 

ac,q, = 0, az 
with boundary and initial conditions 

cfm(c = o,A,  7) = c s b  (pk(z))? - c m ,  

c:m(O,n = 0,z = 0)  = Cfm(O -+ GO,Iz,z) = 0. 
The solution to the zeroth-order problem (4.2) is simply C:m(~,A.,z) = C:m(o,A). 
However C,”, is further determined by the first-order problem: 

with boundary and initial conditions 
1 C,’,(C = O,;l,z) = c;m(O,A = 0,z = 0)  = Csm(O -.+ co,A,z) = 0. 

We must ensure that there is no secular behaviour, lest the expansion become 
disordered as z increases. Hence we force the right-hand side of the first-order 
problem (4.3) to have zero z-average (defined in (4.1)); this leads to a second equation 
for C,9, 

as a consequence of the critical simplification Cfm(c, A, z) = C:m(o, A). It is interesting 
to note that the two time averages we have defined, (.)? and ( . ) r ,  each has a strong 
physical motivation. The time average with respect to the nonlinear time has the 
property of extracting mean behaviour in Lagrangian spherical coordinates, whereas 
only the true time average can be used to distinguish secular behaviour. 

The smooth problem has a very straightforward asymptotic solution c:m(~) (indi- 
cated by an overbar) in the limit A -+ co, obtained as follows. We set a/an  = 0 and 
integrate once with respect to CT. This yields 

- d C:m 
( ( 3 0  + x3(z))(4/3)) do ’ 

__ - 
b 
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where b is a constant to be determined. A definite integration from zero to co yields 

da 
= c:m(o + 00) - c:m(o = 0)  = c, - C&;;(Z));. Lm ((30 + X 3 ( p )  

Therefore, the asymptotic solution to the smooth problem is 

We emphasize that this solution is valid, asymptotically in time, for any nonlinear 
periodic bubble oscillation. In figure 2 we show plots of the asymptotic, smooth 
concentration profile at various instants of time for x(z) = 1 + 0.8sin(2nz) and 
p>(z)  = x-~.~(z). In addition, b = 0 emerges clearly as the threshold condition for 
rectified diffusion. 

The rate of mass transport (2.8) associated with the zeroth-order approximation of 
the smooth problem is 

The asymptotic solution (4.5) gives an expression for the rate of mass transport 

which is valid for any nonlinear periodic bubble oscillation. Because the denominator 
of (4.6) is always positive the threshold for rectified diffusion is therefore 

(4.7) 

this agrees with the criterion developed by Eller & Flynn (1965). The growth rate of 
bubbles away from threshold conditions is close to the result of Eller & Flynn, except 
for large-amplitude oscillations. 

The rate of mass transport associated with the transient in the smooth problem can 
be computed analytically only under the assumption of small oscillations as discussed 
in Appendix B. The mass transport associated with the transient solution of the 
smooth problem is quite significant at the initial stages. It reaches its asymptotic limit 
for i NN 10; this corresponds to t NN 10a2/D if expressed in dimensional variables. 
For example, outside a bubble of radius 35pm, the rate of mass transport reaches 
its asymptotic value by t = 5 s. This is still a short time when compared to the 
experiments of Crum (1980) of 500 s duration. 

c s b  ( p k ( Z ) ) t  - cm = 0 ;  

5. Comparison with previous formulations 
Now that we have completed our mathematical manalysis, it is useful to re- 

turn to the work of previous researchers in this area. We shall focus on the 
analysis of Eller & Flynn (1965) as it is the basis for much of the theoretical 
work concerning rectified diffusion, including Eller (1969), Eller (1972), Crum (1980), 
Crum & Hansen (1982), and Church (1988). In each of these works, the underlying 
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RCURE 2. The asymptotic concentration profile for the smooth problem for the bubble oscillation 
x(z) = 1 + 0.8 sin(2m) and pb(z) = x - ~ . ~ ( T )  at (a) z = 0, (b)  z = T/4, and (c) z = T/2. The 
plots show c:m/Csb versus the dimensionless Eulerian radial coordinate 5 for the case C, = 0. The 
circular arc shows the position of the bubble surface. 

assumption is made that diffusion is of importance only in a thin layer near the 
surface of the bubble. 

The thin-diffusion-layer approximation is exactly the same as the boundary-layer 
analysis we undertook to solve the oscillatory problem, with one exception. In the 
oscillatory problem, the boundary condition has zero average (.)p; this ensures that 
the oscillatory concentration field differs from zero only in a thin layer of thickness 
O(Pe-'/2) near the bubble surface. In our solution of the oscillatory problem, this 
is the reason why the Fourier expansion of the boundary condition (3.2) has zero 
+-mean. 

In contrast, Eller & Flynn consider what we have called the oscillatory problem, 
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but they apply the full boundary condition, i.e. including the Q-average term in the 
Fourier expansion. In fact, when Eller & Flynn take their ‘high-frequency limit’, 
they simply replace the boundary condition by its Q-average! In other words, the 
high-frequency limit of Eller & Flynn is to solve what we call the oscillatory problem 
by applying what we use as the boundary condition of the smooth problem. This 
procedure, pursued by Eller & Flynn (and by others mentioned above), is valid only 
for short times, as pointed out in 8 5 of their paper. The reason is that after some time 
has passed, the smooth boundary condition leads to a diffusion layer with thickness 
that grows like ?‘I2. Therefore the underlying assumption in the analysis eventually 
ceases to be valid. In the present paper we have defined unambiguously the splitting 
of the problem so that (i) the oscillating part of the boundary condition contributes 
(almost) nothing to the transport of gas and leads to a concentration field that differs 
from zero only in a thin layer of liquid near the bubble surface, for all time, and (ii) 
the steady part of the boundary condition is handled in a way that is uniformly valid 
in time and accounts for convection-enhanced diffusion. 

6. Numerical results 
Now we turn to numerical evaluation of the analytic expressions of (i) the threshold 

criterion for rectified diffusion and (ii) the rate of growth or dissolution of bubbles 
away from threshold conditions. A complete calculation of the rate of growth or dis- 
solution of bubbles away from threshold conditions would, of course, have to account 
for slow changes in the periodic response of the bubble associated with its changing 
mass. However, close examination of the experimental results of Crum (1980) reveals 
that the rate of growth or dissolution is very nearly constant over several million pe- 
riods of bubble oscillations. An exception occurs when Crum observes the emergence 
of obvious surface waves on larger (e.g. strongly forced 50pm) bubbles. This situation 
is clearly not addressed by the theory we have outlined. In summary, it would appear 
to be sufficient simply to examine the rate of growth of bubbles of various amplitudes 
under differing conditions. 

The problem of computing the periodic response of a bubble to periodic varia- 
tions in the background pressure has been approached via full numerical solution 
by Eller & Flynn (1965), by Eller (1969), and more recently by Church (1988) and 
Gaitan et al. (1992) using several different methods. In all cases except Eller (1969), 
the authors first computed then discarded the initial transient in order to obtain 
the asymptotic, periodic solution. The same is true in other areas of bubble re- 
search; Lauterborn (1 976) also computed then discarded initial transients to obtain 
frequency-response curves for periodically driven bubbles. This proves to be an ex- 
pensive undertaking, particularly when one wants to examine changes in the bubble 
oscillations over regions of multi-dimensional parameter space. Eller (1969) used a 
laborious shooting method to determine the initial conditions that lead to a periodic 
oscillation for a given set of parameter values. However, like the discarding of initial 
transients, this procedure also provides no information regarding why the oscillations 
change as one alters the parameter. 

In view of these difficulties, many authors have assumed a (small-amplitude sinu- 
soidal) form of the radius as a function of time, and used this as a basis for comput- 
ing the required averages. These works include Hsieh & Plesset (1961), Eller (1969), 
Eller (1972), Crum (1980), Crum & Hansen (1982), and Nagiev & Khabeev (1985). 
For small amplitudes of pressure variation about the mean, these methods are satis- 
factory provided one is careful to avoid resonances. 
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We depart from previous work in what follows by using a new technique to compute 
asymptotic periodic bubble oscillations of arbitrary amplitude numerically, without 
proceeding through the transient. In order to accomplish this, we use a continuation 
algorithm to find the periodic bubble oscillation that is a global attractor at a new 
parameter value, by starting with an initial guess that is the converged solution at 
a nearby parameter value. The first task is to recast the system as an autonomous 
system of ordinary differential equations. This is easily done if one writes an auxiliary 
differential equation which has the periodic forcing as its global attractor. Then 
one simply couples the bubble oscillation to the driver. A suitable nonlinear driver 
sub-system is 

i3 = x3 + e x4 - x3 (x; + 
i4 = -e x3 + x4 - x4 (x; + 

, 
, 

which has the asymptotic solution x3 = sin(0t),x4 = cos(8t); the periodic driver 
motion is a normally hyperbolic limit cycle. Therefore, the stability of the periodic 
bubble oscillation will be characterized by the eigenvalues of the associated fixed 
point of the Poincari (or period) map that derive from the bubble sub-system. 

The numerical method we use is AUTO (Doedel 1986). The differential equations 
(in time) are discretized using an extremely efficient adaptive collocation procedure. 
In practice, this provides a very accurate and quick way to generate asymptotic 
periodic bubble oscillations directly as one varies a parameter. We remark that the 
method only works in the presence of damping in the problem, which makes the 
periodic solution an attractor, in the bubble sub-system. To begin the method, we 
simply set the parameter that controls the coupling between the driver and bubble 
sub-systems to zero. Hence the initial solution is just the (steady) equilibrium in 
the bubble sub-system x(z) = 1, and the periodic driving motion in the driver 
sub-system. Thereafter, changing the coupling parameter from zero results in a 
smooth development of the asymptotic bubble oscillation in response to the driving. 
Moreover, continuation is possible in any of the many parameters of the problem, e.g. 
equilibrium bubble radius, amplitude of the driving pressure oscillations, interfacial 
tension, liquid saturation, etc. Readers well-versed in nonlinear dynamics will note that 
the method we have outlined will detect a period-doubling bifurcation to a solution 
of the form x ( t )  = x(z + 2T)  # x(z + T ) .  These solutions, which may occur at higher 
amplitudes of the forcing, are known to be of importance; see Lauterborn (1976), 
Smereka, Birnir & Banerjee (1987) and Kamath & Prosperetti (1989) for a discussion 
and examples. Note, however, that the quasi-periodic or chaotic motions described 
by these authors, as well as by Szeri & Leal (1991), cannot be approached by the 
technique just described. 

6.1. Nonlinear bubble dynamics 
The method just outlined may be applied directly to any suitable model of bubble 
dynamics. In view of the expected importance of resonances, as shown by the 
numerical results of Church (1988), and as a consequence of known inaccuracies 
of polytropic models near resonances, we make use of a more sophisticated non- 
polytropic bubble model. This model, like the polytropic models, assumes that 
the pressure field within the bubble is uniform. However a spatially non-uniform 
temperature field is allowed. This requires solution of the energy equation for the 
gas within the bubble, which is a partial differential equation. We shall use the four- 
term Galerkin formulation of Kamath & Prosperetti (1989). Hence, to the bubble 
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FIGURE 3. The ratio of the threshold pressure amplitude for rectified diffusion to the steady part of 
the background pressure versus equilibrium bubble radius. The bubbles are driven at a frequency 
of 26.6 kHz, and the interfacial tension is 73 dynescm-'. The dashed curve is (4.7) for saturated 
liquid (as reported by Eller 1969), the solid curve is (4.7) for a saturation of 101.5 % (a correction 
suggested by Church 1988), the points are the experimental data of Eller (1969). 

sub-system and driver sub-system, we append four ordinary differential equations for 
the amplitude coefficients of the Galerkin expansion of the temperature field. The 
pressure inside the bubble is given explicitly by an equation based on constant mass 
of gas within the bubble. These equations are given in the appendix of the paper 
by Kamath & Prosperetti (1989). The bubble sub-system consists of a second-order 
ordinary differential equation which we transform into a first-order system, and use 
the same scales as before to non-dimensionalize; this yields 

-- - x2 
dx1 
dz 

and 

dz 3 c* 

* [ Pi ((1/QO)b + (XI/C*)l)  p* = p a  1- 
Pk 

and the dimensionless sound speed is C* = c/(aQo). 

6.2. Threshold criterion 
In figures 3 and 4 we show plots of the threshold criterion for rectified diffusion 
(4.7), together with some experimental points, due to Eller (1969) and Crum (1980) 
respectively. The physical parameters are the threshold ratio of the amplitude of 
pressure oscillations with respect to the background pressure versus the equilibrium 
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FIGURE 4. The ratio of the threshold pressure amplitude for rectified diffusion to the steady part 
of the background pressure versus equilibrium bubble radius for different far-field concentrations 
of gas in the liquid. The solid curves are (4.7), with C,/Cm = 0.95 (uppermost), 1.00, 1.01, and 
1.04 (bottom). The points are the experimental data of Crum (1980) at the same conditions. The 
bubbles are driven at a frequency of 22.1 kHz and the interfacial tension is 68 dynescm-'. 

bubble radius. The curves in the figures are computed as follows. We begin the 
continuation algorithm at the trivial (normally hyperbolic) periodic attractor in 
which the driver sub-system is completely decoupled from the bubble sub-system. 
Thereafter, the coupling parameter, which corresponds physically to the amplitude 
of background pressure variations, is increased slowly from zero. While this is 
happening, we monitor the value of the threshold function, the left-hand side of (4.7). 
As the pressure amplitude increases, yielding bubble oscillations of larger and larger 
amplitude, the threshold function smoothly passes through zero. We capture the exact 
value of the pressure amplitude at which the threshold function yields zero. In this 
way the threshold pressure amplitude is obtained for a bubble of a single equilibrium 
radius, without computing any transients. 

From this first point, we use continuation to trace out the remainder of the 
threshold curve by switching tactics. The parameter corresponding to the value of the 
threshold function is held constant, while continuation in a takes place. An additional 
free parameter is required; this is met by the amplitude of pressure variations. As one 
can see from figures 3 and 4, the threshold pressure amplitude generally decreases 
with increasing equilibrium bubble radius. 

Note that even with the improvements of the theory we have put forward in 
the present paper, including a much more sophisticated means for determination 
of nonlinear bubble oscillations, the problem remains that the threshold condition is 
accurate only near saturation. In other words, the threshold amplitude of background 
oscillations is in error, compared with the experiments shown in figures 3 and 4, at 
over-and under-saturated conditions. At saturations of 1 and 1.01, the threshold 
results agree quite well with the experimental data of Crum. The agreement between 
theory and the experimental data of Eller (1969), shown in figure 3, is not as good 
unless one takes as 101.5 YO as the saturation of the liquid. This correction is 
suggested by Church (1988). While the errors may in part be due to experimental 
difficulties, these results may also indicate the need to account for the physical effects 
of surfactants on the gas transport across the dynamic interface. 
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FIGURE 5. The rate of bubble growth in Fm per minute versus equilibrium bubble radius in pm. 
The bubbles are forced at a pressure amplitude of 0.2 bar. The solid curve corresponds to (6.1), the 
points correspond to the experimental data of Eller (1969). The diffusivity of the gas in the liquid 
is 2.0 x lo-' cm2 s-'. The bubbles are driven at a frequency of 26.6 kHz, and the interfacial tension 
is 73 dynescm-'. 

6.3. Rate of growth of bubbles away from threshold conditions 
Finally, we turn to an investigation of the rate of growth of bubbles away from 
threshold conditions. Following Eller (1969), the rate of growth of the equilibrium 
bubble radius is related to the mass transfer (given by (4.6)) as follows: 

da RG TmP ( b: dmksm 
dA 

- =aQo-- I f -  
dt 3 M po Pe 

' U /  

1 0  ( ( 3 0  + X3(r))(4'3))T 

In figure 5 we show a plot of the rate of bubble growth versus equilibrium bubble 
radius, for bubbles forced by a background pressure field oscillating at an amplitude 
of 0.2 bar. Also included in the figure are the experimental points of Eller (1969). The 
general trend is for larger bubbles (in terms of equilibrium radius) to grow faster. 

The slight bump at a just less than 60pm corresponds to a resonance in the bubble 
dynamical equations. This may be seen in the bubble response curve in figure 6. As 
the measure of the solution on the vertical axis, we have taken the maximum bubble 
radius over the periodic attractor. On the horizontal axis is the equilibrium bubble 
radius. For reference, in figure 7 we show several bubble time traces for various 
equilibrium bubble radii in figure 6. 

One can observe that the bubble growth rates predicted theoretically by the methods 
outlined above, and plotted as the solid curve in figure 5 are of the same order as 
the experimental results. The predictions are quite good for smaller bubbles, but for 
larger bubbles the growth rates are quite seriously under-predicted. Contrary to the 
polytropic model (appendix C) the effect of resonances is ruled out as the reason 
for the poor agreement between theory and experiment. It would appear that the 
speculations of Crum (1980) and Church (1988) on the importance of surfactants 



Dissolution or growth of oscillating bubbles 399 

25 50 15 100 

a (Pm) 
FIGURE 6. A bifurcation diagram or response curve. On the vertical axis, as a measure of the solution, 
we take the maximum bubble radius in pm over the period of oscillation. On the horizontal axis 
is the equilibrium bubble radius. The bubble oscillations are everywhere stable. The bubbles are 
driven at a frequency of 26.6 kHz, and the interfacial tension is 73 dynes cm-’. 

even in relatively clean laboratory situations cannot be overlooked in a complete 
description of the phenomenon of rectified diffusion. 

7. Conclusions 
We have presented a new formulation and solution of the problem of mass transport 

across the dynamic interface of a soluble spherical gas bubble undergoing volume 
oscillations in a liquid. The validity of the methods employed depends on the Pklet 
number being large, for then the timescale associated with diffusion of dissolved gas 
through the liquid is very much longer than the timescale associated with convection 
of dissolved gas by the radial velocity in the liquid arising from bubble oscillations. 
This approach is a departure from previous theoretical analyses of the problem, in 
which either infinitesimal bubble oscillations or threshold conditions (or both) were 
assumed. The principal theoretical barriers overcome in this work are (i) how to 
formulate the problem for the depletion layer outside a bubble that is growing via 
rectified diffusion (or the excess layer outside a dissolving bubble), (ii) how to handle 
convection-enhanced diffusion of dissolved gas in the liquid, where the motion is 
driven by the bubble oscillations, and (iii) how to formulate a problem for the time- 
dependent part of the Henry’s law boundary condition that yields a solution that 
differs from zero only in a thin layer of liquid near the surface of the bubble, for all 
time. 

To accomplish these advances, we split the convection-diffusion problem into two 
parts : the oscillatory problem and the smooth problem. The splitting corresponds in 
a certain sense we made specific to Stokes’ first problem of the impulsive motion of 
an infinite flat plate and to Stokes’ second problem of an oscillating infinite flat plate. 
The solutions to the oscillatory and smooth problems are valid everywhere in the 
liquid. The solution of the oscillatory problem is characterized by a boundary layer in 
the concentration field of thickness controlled by the Pklet number. The oscillatory 
concentration field accounts for the unsteady part of the boundary condition, but 
quickly approaches zero as one moves away from the bubble. The solution of the 



400 M. M.  Fyrillas 

70 

and A.  J. Szeri 

- (b) 70 

50 

30 4 
0 0.2 0.4 0.6 0.8 1.0 

(4 

70 1 

30F 
0 0.2 0.4 0.6 0.8 1.0 

50 1 
0 0.2 0.4 0.6 0.8 1.0 

FIGURE 7. Time traces of the bubble response 
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at various points along the branch indicated in 
figure 6. The plots show the bubble radius-in pm versus dimknsionless time. The equilibrium radii 
are (a )  32, ( b )  48, (c) 53.4, ( d )  57.4, (e) 62.9, and (f) 70 pm. 

smooth problem accounts for the steady or average part of the boundary condition, 
as well as the net flux of dissolved gas toward or away from the oscillating bubble. 
As a consequence of the small diffusivity of gases in liquids, the smooth problem is 
efficiently treated using the method of multiple scales in time, with evolution on a 
slow timescale controlled by the Piclet number superposed on motion on the fast 
timescale associated with bubble oscillations. Unlike the work of previous authors 
described above, we need assume neither small-amplitude sinusoidal oscillations nor 
threshold conditions to solve for the concentration field using the new formulation. 

Even with the progress reported here on the formulation and solution of the problem 
of mass transport across a dynamic interface, it seems clear after comparison with 
experimental results that some physics remains unaccounted for. Although the theory 
and experiment agree quite well for small bubbles that grow slowly in saturated 
liquids, the prevalence of large growth rates for strongly forced bubbles remains 
elusive. It would appear that a likely candidate for the remaining physics that ought 
to be included in a complete theory is the modification of the gas transport across 
the bubble surface due to the (ubiquitous) presence of surface active materials. 
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Appendix A. Transients in the oscillatory problem 

problem (3.1) for the concentration field given any boundary condition at s = 0, 
Eller & Flynn (1965) work out the details of the transient solution to the oscillatory 

as an initial step in their analysis. As we have reported, the mass transport associated 
with the oscillatory problem is zero, after the decay of initial transients. This leads 
naturally to the question: how quickly does the mass transport associated with the 
transient solution of the oscillatory problem go to zero? 

In order to determine this, we compute the mass transport obtained from the 
transient solution (A 1). After some manipulation we find 

Next we make use of the Fourier expansion of the boundary condition (3.2), to obtain 
the change in bubble mass due to the transient part of the oscillatory problem 

- ( a m  S [ (%) '"1 + b, C [ (T) "*I) sin [omQ] } , 
where S[x] and C[x] are the sine and cosine Fresnel integrals respectively. These 
functions reach their asymptotic values of 1/2 in a few periods of the bubble oscil- 
lation. Thereafter each term in the Fourier expansion corresponds to an oscillation 
with zero mean. We conclude that the oscillatory problem contributes very little to 
the transport across the bubble surface, and then only in the first few periods of 
oscillation. 

Appendix B. Transients in the smooth problem 
We were able to determine in fj 4 the asymptotic concentration field associated 

with the smooth problem for any nonlinear periodic bubble oscillation. In order to 
determine the behaviour at finite 1, it is necessary to make an additional assumption 
so as to obtain a tractable problem. Equation (4.4) simplifies if we make a supposition 
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regarding the size of volume oscillations. The analysis that follows in this section is 
therefore further restricted to small oscillations about the mean volume. 

Under this assumption, the volume of the bubble, which is proportional to x3(~), 
can be split into a mean and an oscillating part 

x3(2) = vo + d(z), v, = (x3(2)),, (d(Z)), = 0, ld(z)l<l. 

Using the binomial theorem, the average within (2.12) may be expanded to yield 

( ( 3 0  + X3(t))(4/3))7 

The mean values of the various powers of d(zj are identified as the central moments. 
The first central moment, of course, is zero. For an arbitrary nonlinear bubble 
oscillation, it is impossible to know a priori which of the central moments is most 
significant. We will therefore combine the remaining terms of the expansion into a 
single function, 

where 6 is a small parameter associated with the bubble oscillation defined by the 
latter equation and f(0) = 1. Furthermore, (2.12) can be brought to a well-known 
form by the variable transformations 

with boundary and initial conditions 

n(z = o,i, j = vy3j [C,b (p;;(z))* - cm] , 
n ( z , i  = 0)  = n(z + 0O,A) = 0. 

This may be solved using a regular perturbation in the small parameter 6, of the 
form 

The zeroth-order problem is given by 
n(z ,  A )  = nO(z, A) + 6 n ' ( z , i )  + . . . . 

ano d2n0 - 
ail a~ 
nO(z = O , A , )  = vy3) [CSb (&(7))* - cm] 
no(z,  A = 0)  = no(z + 00, A) = 0, 

and can be solved by Laplace transforms in A, to yield 
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The first-order problem in the small parameter 6 is 

with homogeneous boundary conditions. This problem is readily solved with the use 
of a Green’s function (Carslaw & Jaeger 1959), 

r i  r m  

n ’ ( z J )  = J, J, Y (z’, A’) G(z ,  z’, 1 - A’)dz’dl’, 

where 

The details are too long to be included here, but we do use this solution to compute 
the associated mass transport 

For the numerically computed bubble oscillations reported above, we found that the 
asymptotic form (4.6) is reached by i = 10. 

Appendix C. Comparison between non-polytropic and polytropic 
bubble models 

Finally, we turn to the influence of the bubble dynamical model itself on the thresh- 
old pressure amplitudes and bubble growth rates that one calculates for nonlinear 
bubble oscillations. The vast majority of studies of rectified diffusion have made use 
of a polytropic expression for the bubble internal pressure. There is one exception 
of which we are aware - the numerical study of Kamath & Prosperetti (1990). In 
the results we presented above, we made use of the non-polytropic expression for 
the bubble internal pressure due to Kamath & Prosperetti (1989). As we show in 
what follows, the primary difference in the results for the polytropic model is a large 
increase in the effect of resonance. It appears that resonances are of lesser importance 
in the non-polytropic model owing to the greater care with which the model accounts 
for thermal dissipation of energy. 

To see this, we shall recreate figures 3 and 5,  and an expanded version of figure 6, but 
with a polytropic bubble model for the purposes of comparison. We choose here to use 
a modification due to Prosperetti (1984) of the formulation of Keller & Miksis (1980). 
This formulation accounts for compressibility of the liquid; for thermal, viscous and 
radiation damping; and makes use of the theoretically estimated polytropic exponent 
( r )  of Prosperetti (1984). The formulation compares well with more sophisticated 
models in a recent careful study by Gaitan et al. (1992). 

The governing equations for the bubble sub-system are the same as in the non- 
polytropic case. The dimensionless bubble internal pressure however, is assumed to 
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FIGURE 8. A plot of the ratio of the threshold pressure amplitude for rectified diffusion to the steady 
part of the background pressure versus equilibrium bubble radius. This is a comparison between 
the non-polytropic bubble model (heavy curve) and a polytropic bubble model (fine curve). The 
heavy curve corresponds to the dashed curve of figure 3. The bubbles are driven at a frequency of 
26.6 kHz, the liquid saturation is 101.5 % and the interfacial tension is 73 dynescm-I. 

have the following form 

which provides an alternative for the energy equation. 
Continuation is again used as the basic technique for developing numerical solutions 

to the bubble dynamical equations, and for testing the threshold criterion. In figure 8, 
we show the threshold curves corresponding to the two bubble models for the 
previously examined case of figure 3. The threshold curves in figure 8 are comparable 
over the majority of the range in a. However, there are several dips in the fine 
curve corresponding to the polytropic bubble model. These are dips of variable 
magnitude, at which the threshold pressure decreases rapidly, and then rises again to 
nearly the same magnitude. The dips correspond to particularly efficient forcing of 
the (polytropic) bubble dynamics that occurs near a resonance between some natural 
frequency of the bubble and the forcing frequency. If one examines, for example, the 
maximum bubble radius over a period of oscillation versus the equilibrium bubble 
radius, then one observes clearly a jump in maximum bubble radius near these 
resonant dips in the polytropic bubble model. Clearly, while still present, the effects 
of resonances in the non-polytropic bubble model are much less. 

A second example of the exaggerated importance ascribed to resonance in the 
polytropic bubble model can be seen in figure 9. Again we see various large jumps in 
bubble growth rate, which correspond to resonances of the system by comparison of 
figures 9 and 10. Where the fine curve in figure 9 is broken, the corresponding bubble 
oscillation is unstable, as determined by the moduli of the associated eigenvalues of 
the Poincari map, computed by AUTO. The non-polytropic bubble model displays 
only a weak bump at resonance. It is clear that the more sophisticated bubble 
model would seem to eliminate unusual bubble growth rates near resonances as an 
explanation of the failure of the theory as it now stands to explain the disagreement 
of experimental results. 
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FIGURE 9. The rate of bubble growth in pm per minute versus equilibrium bubble radius in pm. 
This is a comparison between the non-polytropic bubble model (heavy curve) and a polytropic 
bubble model (fine curve). The bubbles are forced at a pressure amplitude of 0.2 bar. The curves 
correspond to (6.1), the points correspond to the experimental data of Eller (1969). The diffusivity 
of the gas in the liquid is 2.0 x cm2 s-l. The bubbles are driven at a frequency of 26.6 kHz, 
and the interfacial tension is 73 dynescm-'. 
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FIGURE 10. An expanded view of the bifurcation diagram of figure 6. This is a comparison between 
the non-polytropic bubble model (heavy curve) and a polytropic bubble model (fine curve). On 
the vertical axis, as a measure of the solution, we take the maximum bubble radius in pm over 
the period of oscillation. On the horizontal axis is the equilibrium bubble radius. The solid curves 
indicate stable bubble oscillations; unstable parts of the branch are shown as dashed curves. The 
bubbles are driven at a frequency of 26.6 kHz, the liquid is saturated and the interfacial tension is 
73 dynes cm-'. 

As a third example of the very different behaviour of the two bubble models 
near resonance, we show a bifurcation diagram in figure 10 which is essentially a 
reproduction of figure 6 over a broader parameter range. Note that where there are 
multiple periodic solutions at the same parameter value, the maxima in the curves 
R(z) (which are taken as the measures of the solutions) may occur at different z. 
Where the curve is dashed, the corresponding bubble oscillation is unstable; where it 
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is solid, the bubble oscillation is stable. Although it is not possible to see in figure 10, 
there are two small folds for the polytropic response (fine curve) near 27 and 36pm, 
where the branch which comes from the left has a limit point where it reverses 
direction and becomes unstable, followed very quickly by another limit point where 
the branch again becomes stable. Hence there is a tiny range of parameters near 27 
and 36pm where there are multiple stable attracting periodic bubble oscillations for 
the same forcing pressure amplitude in the polytropic model. Moreover, both stable 
branches can be reached by exploiting hysteresis in the standard way. 

These remarks are perhaps more clear when one looks at the region around 
52pm on the polytropic branch. There is an obvious limit point at 55.3pm where 
the polytropic branch doubles back and becomes unstable. Following this unstable 
portion of the branch, the solution develops very deep cusps that become increasingly 
difficult to compute. However, AUTO is able to track the cusps and follow the 
solutions. Continuing on the same branch, there is a bifurcation to an invariant 
torus (i.e. a secondary Hopf bifurcation of the associated fixed point of the Poincari 
map that corresponds to quasi-periodic motion), where the periodic branch for the 
polytropic model becomes stable again when the radius is 50.2pm. The important 
feature to which we wish to draw attention is the rather large overlap, where there are 
two stable attracting periodic bubble oscillations for the polytropic model. Similar 
features were described by Lauterborn (1976), although his method of integrating 
through the transients makes it impossible to find unstable solutions or to determine 
bifurcations or to deduce the overall structure of the solution set. Either attractor 
may be reached by continuation from below or from above; hence there is hysteresis. 
Because the two attractors for the polytropic model in the parameter range 50.2- 
55.3pm are characterized by bubble oscillations of different shape and magnitude, the 
growth rates of bubbles following these two attractors are different (figure 9). In stark 
contrast, the corresponding resonance in the non-polytropic bubble model appears in 
the response curve as a small bump. 

Finally, in figure 10, note the large fold that occurs near 105pm in both the 
polytropic and non-polytropic bubble models. The oscillations are unstable on the 
reversed part of the branches. In the non-polytropic model (heavy curve), the 
oscillations stabilize after a second limit point. In the polytropic model (fine curve), 
the oscillations stabilize after a bifurcation to an invariant torus near 11Opm. For 
the polytropic model, this largest fold is similar to the one near 50pm, except that 
instead of a set of equilibrium bubble radii with multiple attracting periodic bubble 
oscillations, there is now a window of equilibrium bubble radii with no attracting 
periodic bubble oscillation. The dynamics in this window are most likely characterized 
by a quasi-periodic attractor corresponding to the invariant torus. Alternatively, the 
dynamics may be chaotic. In either case, we did not pursue intense study of the 
oscillations of larger bubbles, as Crum (1980) has reported that such bubbles are 
susceptible to visible surface waves upon excitation by the acoustic sound field; this 
behaviour violates the assumption of spherically symmetric motion we made at the 
outset. In addition, we note that the amplitude coefficients of the Galerkin expansion 
of the non-polytropic model decay only slowly for a greater than about 100pm. This 
indicates that some scepticism is in order regarding the results in this parameter 
range. Increasing the Galerkin approximation to more than four terms would be 
appropriate for further study. 

These comparisons indicate that great care must be taken in studies of rectified 
diffusion to use an appropriate bubble model, particularly near resonances of the 
bubble dynamical equations. 
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